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A Useful Theorem for a Lossless Multiport Network

Xiaowei Shi, Changhong Liang, and Yiping Han

Abstract-A useful theorem is obtaiued for a Iossless multiport network
from the unitary condition of scattering matrix, and is proven to be
equivalent to the unitary condition. Some illustrations are given to show
how to apply the theorem to the analysis of the properties of a Iossless
n-port network.

L INTRODUCTION

In microwave engineering, many passive components can be taken

as lossless. Therefore, analysis and synthesis of lossless networks are

very important.

It is well known that the scattering matrix S of a lossless network

meets the unitary condition

S+S = I. (1)

For a lossless two-port network, the following constrained condi-
tions may result from (1) [1]:

Is,,l = 1s221. Is,,l = 1,%,1 (2)

exp[j(pll +YZZ)] = exp{j[(plz + PZ1) + r]} = det(S) (3)

]s,,1’ + IS2,12= 1s,212+ /s,21’= 1 (4)

in which S,~(i, k = 1, 2) is the element of matrix S,j = =, p,~
is the phase of the element S, ~, det (S) means the determinant of

matrix S.
For a lossless n-port network (n > 2), things become complex.

Multiplying S+ with S and demanding the product-matrix equaf
unitary matrix, we can get n real equations and n( n – 1)/2 complex
equations. Those equations appear in a form different from (2) and
(3). Also, they are not convenient to the analysis of the properties of
a Iossless n-port network.
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In 1991, Liang and Qiu [2] first found that the magnitude relation
(2) may be generalized to a lossless n-port network. This paper shows

that the phase relation (3) may also be generalized to a lossless
n-port network. Furthermore, while the matrix S of a lossless n-
port network (71> 2) meets the generalized magnitude relation and

generalized phase relation, any column (or row) of matrix S must be
a complex unit vector (by using the term complex unit vector, we
mean that the square sum of the magnitude of its elements equals 1),
which is the generalized form of (4). That is to say. for a lossless
n-port network (n > 2), the generalized magnitude relation and

phase relation are equivalent to the unitary condition (1). To be more
important and meaningful, it is found that by using the generalized
magnitude relation and generalized phase relation, the analysis of the

properties of a lossless n-port network becomes much simpler. Three
illustrations are given in this paper.

II. Two THEOREMS FOR LOSSLESS NETWORKS

Because the magnitude of the determinant of a scattering matrix
must be 1 for lossless networks, in this paper, we will always let

det (S) = exp (,jp~) (5)

for a lossless network, where PD is the phase of the determinant of

scattering matrix S.
Theorem 1: For a lossless n-port network, write its scattering

matrix S in partitioned form

(6)

so that at least one of the two submatrix pairs (S~~. Shb ). ( Sab, Sba )

is a square matrix pair. Let .Mtck represent the cofactor of square
submatrix S,~ (i, k = a, b) in det (S); then we have

/det(S,~)l = \IW~~l= ldet(,s~,)l (i, k = a, 6) (7)

arg[det (S,~ )] + arg (fi~,c~) = PD (i, k=a, b) (8)

or, equivalently,

[det (S,,)]* = exp (–jp~)kf~, (i, k = a, b). (9)

Remark: Applying Theorem 1 to a two-port network, we can
get (2) from (7) and (3) from (8). Therefore, we call (7) and (8)
the generalized magnitude relation and generalized phase relations,
respectively. For convenience, in the following we will make use of

(9) instead of (7) and (8).
Proof The proof will be given only fOr the case that (Sab. Sba)

is a square submatrix pair. A similar proof may be easily made for
other cases.

Suppose S.b is an m Xm matrix. Then, Sb. is an (n –m) x (n–m )
matrix, Saa is an m x (n – m) ma~ix, sbb is an (n – m ) x nl ma~ix.
By applying the unitary condition (1) to partitioned matrix (6), we

can get

S:aSaa + S~&a = I._m

,f&sab + S;skb = 1~

– O(n–m)xmS:asab + s~asbb – (lo)

where 1~ represents the m x m unit matrix, 0(. – .,, ~~ represents

an (n – m) X m zero matrix.
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and multiply S+ (from

[

s+
S+u= ~y

-[

s~

– s&

I J(n–m) ‘(n–m)Xm Jnxn

the right) by U

1[S& o~x(.–m) S.b
s& f(n–rn) O(n–m)xm 1
S:aS.b 1S:bSab “

(12)

Without changing the determinant value of the above block matrix,
we may add the product of its first column with Sbb to its second
column. Thns, we have

[

(g) det SL qn-m)xm
Sk I. 1=[det(Sb~j]*. (13)

On the other hand,

det(S+U) = [det(S)]* det(U) = exp (–jpD)Jl&. (14)

Thus, we have proved (9) for i = b, k = a. Letting

[

u = Ornx(.-rn) 1~
Sba 1‘(.–m).m .Xn (15)

and making similar dednction, one may prove (9) for i = a, k = b.

The above proof clearly indicates that formulation (9) is an
inevitable inference of the unitary condition (1). However, as we
will prove, when n is greater than 2, the unitary condition (1) may

also be deduced from (9). That is to say, formulation (9) is actually
equivalent on the unitary condition (1) when n is greater than 2.

Theorem 2: Write the scattering matrix S of n-port network
(n > 2) in partitioned form (6) so that at least one of the two
submatrix pairs (S.., sbb ), (Sab, Sba ) is a square matrix pair.If
a network makes formulation (9) tenable for any square submatrix
S,~ (i, k = a, b) in every possible partitioned form, its scattering
matrix must be unitary (i.e., the network is lossless).

Proof Because formulation (9) is tenable for every partitioned
form of S, we can choose a special partitioned form in which Saa

or S~b is a submatrix of order 1 (i.e., an element of matrix S). TO
do so, in the following, S,~ (z’, k = 1, 2,... , n ) will be concerned
as an element of matrix S, AA will be concerned as the cofactor of
S,k in det (S ). By applying (9), we have

S~~ = exp(–jp~) A,~ (i, k=l,2,..., n). (16)

According to cofactor expansion of determinants [3], we can get

~S~k&t ‘~) exp(-jw~)~&kSti ‘~ exp(-jw~)det(S)d~.
,=1 ,=1

(17)
But the unitary condition (1) is equivalent to

~S:& = hk,. (18)
,=1

Therefore, Theorem 2 will be proven if we can prove det (S) =
exp (jpD).

Now, divide all possible cases into two types. 1) Every nondiagonal
element S,~ (i # k) equals zero. Thus. we can get IS1I \ = IS2ZI =
. ~~= lSm,,l = 1 anddet(S) = S11S2, ...S~~ = exp[.i(yll+~zz+
. ..+ pnn )] from (16). Apparently, this network is actually composed

of n lossless one-port networks. 2) There is at least one nonzero,

nondiagonal element. Noting the arbitrariness for port numbering,
we can choose S1, # O. Thus, according to (9), we have

S1, = exp(jw~)AT2 = exp(jp~)~(–s,l~,l)’. (19)
,=2

While writing the last equality, we use the cofactor expansion again
so that D,l is the cofactor of S,1 in the determinant of (– AM ) [the
negative sign is due to the fact that A 1z is a cofactor of S12 in the
determinant det (S )]. Now, considering the role of D,l in det (S)
and applying (9), we can get

D,l = exp (.19D)(S11S,2 – S1, S,1)”.

Inserting (20) into (19), we have

n

S12= 5s121s1112–
(g)

Sll ~s:l SL2 –
,=2 ,=2

Therefore,

1(=)~ls,llz ‘=)exp (–jYID.

%251s,112.
,=1

det (S).

(20)

(21)

(22)
,=1

Thus, we have proven Theorem 2.
Actually, from the above proof, we can see that to identify a

lossless network with formulation (9), one need not check all possible
square submatrices; most relations will be automatically tenable while
the remaining relations are tenable. If we note that the unitary
condition (1) actually gives n2 real equations for an n-port lossless
network, the above conclusion is obvious.

III. ILLUSTRATIONS FOR APPLICATION OF THEOREM 1

Example 1: Consider a lossless three-port network. Being termi-
nated from its port 3 with a load of reflection coefficient r, it
is equivalent to a two-port network. The scattering matrix
equivalent two-port network is [1]

in which Sik ( i, k = 1, 2 ) is the element of the scattering

of the original three-port network, AA is the cofactor of S, ~.

of the

(23)

matrix
If the

load is a movable short (i.e., Irl = 1), then 1) if ISIZI = [S~l].
according to (9),

S1, /A, I = exp[j(plz + IP21– WD)]= s21/A12. (24)

Therefore, when

r = exp{j[(~12 + p21) + m– pD]} (25)

S{, = Sjl = O. That is, there will be no transmission of energy
between port 1 and port 2 while the movable short takes an adequate
position indicated by (25). 2) If IS1l I = ISM 1, according to (9),

s1l/Aaz = exp[j(pll + p22 – pD)] = s22/A1l. (26)

Therefore, when

r = exp{j[(pll + 922)– PDI} (27)

S! ~ = S42 = O. That is, there is a complete transmission of energy
between port 1 and port 2 while the movable short takes an adequate
position indicated by (27).

From the above, we see that lossless three-port networks have the
following properties.

1) While ISIZ ] = \Szl I for a lossless three-port network, a position

can be found for a movable short terminating the port 3 of the network
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for which there is no transmission of energy between the other two

ports.
2) While lS11 I = 1S22I for a lossless three-port network, a position

can be found for a movable short terminating the port 3 of the network

for which there is complete transmission of energy between the other
two ports.

Apparently, the above properties are the generalization of the
corresponding properties [1] of reciprocal three-port networks,

Example2: Consider scattering bounds for a general lossless

reciprocal three-port network. Butterweck [4] had pointed out that

there are some bounds for the scattering parameters of a general

reciprocal three-port network. By using Theorem 1, wecan deal with

this problem in a simpler manner.
According to (9), we have

Sj3 = exp(–jy~)(S12,

Therefore,

S1ZS13—
s,,

13—slls23).

> ~ _ s12s13
—

s23

Similarly. there are

I

(28)

(29a)

(29b)

(29c)

Noting IS1112+ ISZZ12+ ISS312+2( IS1212+ 1S1312+ IS3312) = 3,
we have

[ (1
S12S13 + SIZSZ3

1)1
+ S13S23 2+ z.3>1– ———

s23 .913 ,912
(30)

That is,

S1’2S13+ s12s23 + s13s23 < ~o<———
s’3 S13 S12 –

(31)

with (29a)–(29c) and (31), we can get further results (see [4]).
Actually, Theorem 1 is particularly useful for analyzing some

special network (e.g., matched network and symmetrical network).
Example 3: Consider a matched lossless reciprocal five-port net-

work (e.g., the so-called “star”); its scattering matrix is in the
following- form:

‘=:! ;;Os:l

Applying (9) to its 10 principal minors of order 2, we have

‘@z = eXp(jPD) . (2 S34S45S35)’,

‘S~3 = eXp(j~D) . (~S24S45S25)*

–S~~ = exp(j~D) ~(2 S23S35S25)’,

–Sfs = eXp (jPD) . (2SW&$z4)*

–,!& = eXp(jPD) . (2 S14S45S15 )”.

–S;. = exp(j~~) . (2 S13,SWS15)*

‘s~~ = eXp(j~D) . (2 SU&&q)*,

‘S~4 = eXp(j@D). (2s12s25s15)”
–S& = exp(jp~) . (2 S12SMSIl)*,

–s;5 = eXp(j~D) (2sIzs23slJ)*.

(32)

(33)

Extracting the magnitude relations from (33), we have

IS?ZI = \zs34s45s351,1S;,1= l~s24s45s251

= 1’2S23S35S251, /S;,1 = 12 S23S34S241

= IZS,4S4,S,,I, IS;41 = 12sHjssssIsl

= 12s,ssMsIAl, IS;AI = 12snsmsMl

= 12s,2s24s,41, p:,l = 12s,2s23s,,1. (34)

Noting the symmetry of (34), we can see that there are only two
possible solutions:

lSl,l=... =lS151= lS231=l S451=051=0 (35)

or

/s,21= = ls151= 1s231=.= 1s451=1/2. (36)

Obviously, only solution (36) is meaningful. Also, it meets the
unitary condition. As for the phase relations, only six independent
relation may result

exp [j(2P12 + P34 + P45 + Y.35)1= –ew LiPD ) (37a)

eXp[j(~$%3 + $924 + P45 +’ P25)] = ‘exp (j~D) (37b)

exp[j(2~14 + P23+ 935 + $725)]= ‘exp (~p~) (37C)

exp[j(&I15 + p23 + p34 -1-+224)]= –exp (jp~) (37d)

exp[j(2pzs + 914 + 945 + 915)] = ‘exP (jVD) (37e)

exp[j(ZW2.I + P13+ ‘#35+ V15)]= ‘exp(j VD). (37f)

While a matched lossless five-port network is rotationally symmet-
rical, that is, SIZ = S23 = SW = S45 = S15. Sls = S35 = SZ5 =

S24 = S14. there are

+~lz – y13 = &2n/3. (38)

The results (36) and (38) were rigorously proven by Heiber [5], but
the procedure here seems much simpler and clearer.

IV. CONCLUSION

Two theorems are proposed in this paper for a lossless network.
The above work shows that by using Theorem 1, the analysis of a
lossless network often becomes simpler. Besides, Theorem 2 states

that Theorem 1 is actually equivalent to the unitary condition of

scattering matrix. Therefore, Theorem 1 may also be used to predict
some special lossless networks with particular properties.
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