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A Useful Theorem for a Lossless Multiport Network

Xiaowei Shi, Changhong Liang, and Yiping Han

Abstract—A useful theorem is obtained for a lossless multiport network
from the unitary condition of scattering matrix, and is proven to be
equivalent to the unitary condition. Some illustrations are given to show
how to apply the theorem to the analysis of the properties of a lossless
n-port network.

I. INTRODUCTION

In microwave engineering, many passive components can be taken
as lossless. Therefore, analysis and synthesis of lossless networks are
very important.

It is well known that the scattering matrix S of a lossless network
meets the unitary condition

StS =1. )

For a lossless two-port network, the following constrained condi-
tions may result from (1) [1]:

[S11l = |S2al. [S12| = [Sa21] )

exp (w11 + w22)] = exp {j[(w12 + w21) + 7]} = det(S) (3)

|5'11|2 + |521|2 = I522|2 + ]512|2 =1 “4)

in which S,x (¢, k = 1, 2) is the element of matrix S, j = /=1, @&
is the phase of the element 5., det(.S) means the determinant of
matrix S.

For a lossless n-port network (n > 2), things become complex.
Multiplying St with S and demanding the product-matrix equal
unitary matrix, we can get n real equations and n(n — 1)/2 complex
equations. Those equations appear in a form different from (2) and
(3). Also, they are not convenient to the analysis of the properties of
a lossless n-port network.
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In 1991, Liang and Qiu [2] first found that the magnitude relation
(2) may be generalized to a lossless n-port network. This paper shows
that the phase relation (3) may also be generalized to a lossless
n-port network. Furthermore, while the matrix S of a lossless n-
port network (n > 2) meets the generalized magnitude relation and
generalized phase relation, any column (or row) of matrix S must be
a complex unit vector (by using the term complex unit vector, we
mean that the square sum of the magnitude of its elements equals 1),
which is the generalized form of (4). That is to say. for a lossless
n-port network (n > 2), the generalized magnitude relation and
phase relation are equivalent to the unitary condition (1). To be more
important and meaningful, it is found that by using the generalized
magnitude relation and generalized phase relation, the analysis of the
properties of a lossless n-port network becomes much simpler. Three
illustrations are given in this paper.

II. Two THEOREMS FOR LOSSLESS NETWORKS

Because the magnitude of the determinant of a scattering matrix
must be 1 for lossless networks, in this paper, we will always let

det (S) = exp (j¢p) 3

for a lossless network, where wp is the phase of the determinant of
scattering matrix S.

Theorem 1 : For a lossless n-port network, write its scattering
matrix S in partitioned form

S = [Saa Sab:l (6)

so that at least one of the two submatrix pairs (Saa. Ss ). (Sabs Sba)
is a square matrix pair. Let M, represent the cofactor of square
submatrix S,x(i. £ = a, b) in det(S); then we have

[det (S.p)| = |M5| = |det (Sk.)|  (ivhk=a,b) (D

arg [det (S.x)] + arg (M) = D (i, k=a,b) 8)

or, equivalently,

[det (S.x)]" = exp(—jon )My (i, k=a,b). ')

Remark : Applying Theorem 1 to a two-port network, we can
get (2) from (7) and (3) from (8). Therefore, we call (7) and (8)
the generalized magnitude relation and generalized phase relations,
respectively. For convenience, in the following we will make use of
(9) instead of (7) and (8).

Proof: The proof will be given only for the case that (Sqas. Sba)
is a square submatrix pair. A similar proof may be easily made for
other cases.

Suppose Sqp is an m X m matrix. Then, Sy, is an (n—m) X (n—m)
matrix, Sqq is an m X (n —m) matrix, Sy is an (n —m ) X m matrix.
By applying the unitary condition (1) to partitioned matrix (6), we
can get

S:‘aSaa + S;;Sba =dn—m
81 50y + S Shp = I,

Sj_asab + Sl;{;sbb = O(n-—-m)xm (10)

where I, represents the m X m unit matrix, O, _ ) xm represents
an (n — m) X m zero matrix.
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Let
(@] _ Sab
U = mx(n—m) a :l (11)
{ Iieny  Otn—m)xm [y
and multiply S (from the right) by U
ST SF170 _ Sab
S+U — I: aa ba]|: mX{n—m) a
Sj_b slj;; I(n—m) O(n—m)Xm
S SE Sae
=[5 S5 a2

Without changing the determinant value of the above block matrix,
we may add the product of its first column with Sy to its second
column. Thus, we have

+
det (STU) = det [Sba

St 8. + S;;Sbb
S
bb

S5 Sab + S5y Sue

1) 4o [g% O(n}:nm}
= [det (Spa)]" (13)
On the other hand,
det (STU) = [det (5)]" det (U) = exp (—jop ) Ms,. (14)
Thus, we have proved (9) for i = b,k = a. Letting
R

and making similar deduction, one may prove (9) for ¢ = a,k = b.

The above proof clearly indicates that formulation (9) is an
inevitable inference of the unitary condition (1). However, as we
will prove, when n is greater than 2, the unitary condition (1) may
also be deduced from (9). That is to say, formulation (9) is actually
equivalent on the unitary condition (1) when n is greater than 2.

Theorem 2 : Write the scattering matrix S of n-port network
(n > 2) in partitioned form (6) so that at least one of the two
submatrix pairs (Saa, Ses), (Sab, Sea) IS a square matrix pair. If
a network makes formulation (9) tenable for any square submatrix
S.i(i, k = a, b) in every possible partitioned form, its scattering
matrix must be unitary (i.e., the network is lossless).

Proof: Because formulation (9) is tenable for every partitioned
form of S, we can choose a special partitioned form in which S..
or Sgp is a submatrix of order 1 (i.e., an element of matrix 5). To
do so, in the following, S,z (¢, k = 1, 2,--+,n) will be concerned
as an element of matrix S, A,; will be concerned as the cofactor of
Sy in det (S). By applying (9), we have

S =exp(—jep) Aw (i, k=1,2,,n). (16)

According to cofactor expansion of determinants [3], we can get

U o (18 . = 3 .
ZSlkSzz = exp(—]tpp)ZA,kSu = exp(—jep)det(S) dri.

=1 =1
a7
But the unitary condition (1) is equivalent to
> S0 Su = . (18)
=1

Therefore, Theorem 2 will be proven if we can prove det(S) =
exp (j¢p).

Now, divide all possible cases into two types. 1) Every nondiagonal
element S, (7 # k) equals zero. Thus. we can get |S11] = |Sa2| =
cvo= S, = 1anddet(S) = 511522 -+ - Sun = exp[j(p11+paz+
s+ n, )] from (16). Apparently, this network is actually composed
of n lossless one-port networks. 2) There is at least one nonzero,

nondiagonal element. Noting the arbitrariness for port numbering,
we can choose Stz # 0. Thus, according to (9), we have
Si2 = exp(jon) Al = exp(Jpp)Y (=SuDu)™. (19

=2

While writing the last equality, we use the cofactor expansion again
so that D, is the cofactor of S,; in the determinant of (—A12) [the
negative sign is due to the fact that Ay, is a cofactor of 12 in the
determinant det (S)]. Now, considering the role of D,; in det(S)
and applying (9), we can get

Dy =exp (390)(S11.5:2 — S125.1)" (20)

Inserting (20) into (19), we have
S12 = 25121511|2 - 5112511512 = 5122|5z1|2- 21
1=2 =2 =1
Therefore.

21) ar ,
12 575,12 2 exp(—ipp) det (9. (22)
=1

Thus, we have proven Theorem 2.

Actually, from the above proof, we can see that to identify a
lossless network with formulation (9), one need not check all possible
square submatrices; most relations will be automatically tenable while
the remaining relations are tenable. If we note that the unitary
condition (1) actually gives n? real equations for an n-port lossless
network, the above conclusion is obvious.

III. ILLUSTRATIONS FOR APPLICATION OF THEOREM 1

Example 1: Consider a lossless three-port network. Being termi-
nated from its port 3 with a load of reflection coefficient T, it
is equivalent to a two-port network. The scattering matrix of the
equivalent two-port network is [1]

, S:(ll 5,12 Sll_SAzlgr 512—EA 1}‘1—‘

_ _ | 153 1-533

S = T :| - ls R0 Sy Ar 23)
21 22 1—-533T 1—-533I0

in which S;z(Z, k¥ = 1, 2) is the element of the scattering matrix
of the original three-port network, A, is the cofactor of S.i. If the
load is a movable short (i.e., |T| = 1), then 1) if |Si2| = [S21].
according to (9),

S12/A01 = expli(p12 + w21 — pp)] = S21/A12. (24)
Therefore, when
I'=exp {jl(¢12 + p21) + 7 — »D]} (25)

S1, = S5 = 0. That is, there will be no transmission of energy
between port 1 and port 2 while the movable short takes an adequate
position indicated by (25). 2) If |S11] = | S22/, according to (9),

S11/00 = exp[j(©11 + w22 — ©p)] = Saa/A11. (26)

Therefore, when

I =exp {j[{911 + v22) — ©D]} 27

Si1 = S5 = 0. That is, there is a complete transmission of energy
between port 1 and port 2 while the movable short takes an adequate
position indicated by (27).

From the above, we see that lossless three-port networks have the
following properties.

1) While |S12| = |Sa:| for a lossless three-port network, a position
can be found for a movable short terminating the port 3 of the network
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for which there is no transmission of energy between the other two
ports.

2) While |S11| = | Saz] for a lossless three-port network, a position
can be found for a movable short terminating the port 3 of the network
for which there is complete transmission of energy between the other
two ports.

Apparently, the above properties are the generalization of the
corresponding properties [1] of reciprocal three-port networks.

Example 2: Consider scattering bounds for a general lossless
reciprocal three-port network. Butterweck [4] had pointed out that
there are some bounds for the scattering parameters of a general
reciprocal three-port network. By using Theorem 1, we can deal with
this problem in a simpler manner.

According to (9), we have

Sz = exp(—j¢p)(S12515 — S11523). 28
Therefore,
[S11] = §23 exp (jp) — 512513 > ‘1 _ %ﬁ?&i (292)
23 23 23
Similarly. there are
|S2z| > !1 - ‘% (29b)
513
|S55] > il - ‘5@ (29¢)
512
Noting |511]> + {S22]% + |S33]% + 2(|S12)? + [S13]? + | S=3]?) = 3
we have
S12815] | | S12S2s| | | S13S2s|\]?
3> 11— 2. 30
- [ (‘ Sas3 Si3 S12 >:| * G0
That is,
512313 512523 513523
0 Saz + ‘ S13 + Si2 sz @b

with (29a)-(29¢) and (31), we can get further results (see [4]).
Actually, Theorem 1 is particularly useful for analyzing some
special network (e.g., matched network and symmetrical network).
Example 3: Consider a matched lossless reciprocal five-port net-
work (e.g., the so-called “star™); its scattering matrix is in the
following form:

0 Sz Sz Swe Sis
512 0 523 524 525
§= |53 S 0 834 53 (32)
Sty Sza Ssa 0 Sis
Sis S2s S3s Sy 0
Applying (9) to its 10 principal minors of order 2, we have
— 872 = exp (jon) - (2854545 535)",
—S%3 = exp (jyp) * (2524545 525)*
—57s = exp(jyp) - (2523535525)",
—S%s = exp (jp) - (2523534 524)"
82, = exp (jp) - (2514545515)",
—-S2, = exp(jyp) - (2513535515)*
—S35 = exp (jop) - (2513534 514)",
—83, = exp(jp) - (2512825515)"
~ 535 = exp (jn) - (2512524514)",
—Si5 = exp(jyn) - (2512.523513)". (33)

Extracting the magnitude relations from (33), we have

l5%2| = |2534545535l, |5f3| = |2524545525|

|8%4] = 12523535525, |75 | = 2523534524
|S35| = [2514545 515, |S54] = 2513535515
|5§5l = 12515534514/, |S§4| = 12512525 515]

|S35] = |2512524 514/, | Sis| = 12512523 513]- (34)
Noting the symmetry of (34), we can see that there are only two
possible solutions:

|Sia| = -+ = |Sis| = |S2a] = -+ =

|Sas| =0 (35)

or

[Si2] =+ =|S15]| = |S23) =+ - = |Sas] = 1/2. 36)
Obviously, only solution (36) is meaningful. Also, it meets the
unitary condition. As for the phase relations, only six independent

relation may result

exp (2012 + waa + pus + ¢a5)] = —exp (jop)  (37a)
exp |7 (2p13 + 24 + @15 + p25)] = —exp(jpp)  (37b)
exp [j(2¢14 + 23 + 035 + 25)] = —exp (Jwp)  (370)
exp [j(2p15 + 23 + @34 + 924)] = —exp (jep)  (37d)
exp [j(2p23 + 14 + a5 + p15)] = —exp (Jop)  (37e)
exp [1(2¢24 + 13 + a5 + ©15)] = —exp (Gpp).  (37)

While a matched lossless five-port network is rotationally symmet-
rical, that iS, 512 - 523 - 534 = 545 = 515. 513 = 535 = 525 =
Sa24 = S14. there are

P12 — @13 = :l:27T/3 (38)
The results (36) and (38) were rigorously proven by Heiber [5], but
the procedure here seems much simpler and clearer.

IV. CoNCLUSION

Two theorems are proposed in this paper for a lossless network.
The above work shows that by using Theorem 1, the analysis of a
lossless network often becomes simpler. Besides, Theorem 2 states
that Theorem 1 is actually equivalent to the unitary condition of
scattering matrix. Therefore, Theorem 1 may also be used to predict
some special lossless networks with particular properties.
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